Re: Differentialregning
: 29 dec 2023, 14:42
c) Differentiering:
\(O(x)=2\,\pi\,x^2+2\,\pi\,x\,h=2\,\pi\,x^2+2\,\cancel{\pi}\,\cancel{x}\frac{100}{\cancel{\pi}\,x\,\cancel{x}}
\;,\; h=\frac{100}{\pi\,x^2} \\
O(x)=2\,\pi\,x^2+200\cdot \frac{1}{x} \\
O'(x)=2\,\pi\cdot 2x+200\cdot \Bigl(-\frac{1}{x^{2}}\Bigr)=4\,\pi\,x-200\cdot\frac{1}{x^{2}}=4\,\pi\,x-200\,x^{-2}
\)
Optimering:
\(4\,\pi\,x-200\,x^{-2}=0\qquad(\textup{grafens nulpunkt}) \\
\pi\,x-50\,x^{-2}=0 \\\pi-50\,x^{-3}=0 \\50\,x^{-3}=\pi \\x^3=\pi^{-1}\cdot 50^{1} \\
x=\pi^{-\frac{1}{3}}\cdot 50^{\frac{1}{3}}\qquad\qquad\qquad\qquad\;\;\Rightarrow x_{min}\approx 2.52\;(\textup{cm}) \\\\
h=\frac{100}{\pi\Bigl(\pi^{-\frac{1}{3}}\;50^{\frac{1}{3}}\Bigr)^{\!2}}
=\frac{100}{\sqrt[3\,]{\pi}\;\bigl(\!\sqrt[3\,]{50}\,\bigr)^{\!2}}\Rightarrow h_{min}\approx 5.03\;(\textup{cm})
\)
NB. Opret en ny tråd ved ny opgave!