Velkommen til Matematikcenter online forum
Opret dig som bruger og få gratis adgang til Danmarks eneste gratis matematikhjælp for alle.
Har du allerede en bruger? Log ind her.

Differentiation af brøker og sammensatte funktioner

Besvar
MikeCharlie
Indlæg: 39
Tilmeldt: 03 nov 2021, 11:59

Differentiation af brøker og sammensatte funktioner

Indlæg af MikeCharlie »

Hejsa. Jeg er ved at tygge af mine fingre over denne her. Jeg skal differentiere

\(f(x)=\frac5{x+1}\)

Vha. kvotientreglen (\(IV\)) ser jeg at

\(f'(x)=\frac{{g'(x)}\cdot{h(x)}-g(x)\cdot{h'(x)}}{(h(x))^2}\)

som giver \(f'(x)=\frac{0\cdot(x+1)-5\cdot(1+0)}{(x+1)^2}\)\(=\frac{-5}{(x+1)^2}\) ( hvilket jeg først skrev som \(=\frac{-5x}{(x+1)^2}\) fordi jeg havde glemt at \((x)'=1\) )

Dog hvis jeg manipulerer det oprindelige udtryk og dernæst benytter regneregel \(V\) for sammensatte funktioner fåes

\(f(x)=\frac5{x+1}=\frac{5\cdot1}{x+1}=5\cdot\frac{1}{x+1}=5\cdot(x+1)^{-1}\)

hvor

\(f'(x)=(-1)\cdot5\cdot(x+1)^{-2}\cdot1=-5\cdot(x+1)^{-2}\)

Som gerne skal kunne omskrives til \(\frac{-5}{(x+1)^2}\) men hvordan?
JensSkakN
Indlæg: 1216
Tilmeldt: 17 mar 2020, 12:33

Re: Differentiation af brøker og sammensatte funktioner

Indlæg af JensSkakN »

De to udtryk er fuldstændig identiske og begge korrekte.
Pr. definition
\(a^{-b}=\frac 1 {a^b}\)
MikeCharlie
Indlæg: 39
Tilmeldt: 03 nov 2021, 11:59

Re: Differentiation af brøker og sammensatte funktioner

Indlæg af MikeCharlie »

JensSkakN skrev:De to udtryk er fuldstændig identiske og begge korrekte.
Pr. definition
\(a^{-b}=\frac 1 {a^b}\)
Ah, selfølgelig, tak.

\(-5\cdot(x+1)^{-2}=\frac{-5}{(x+1)^2}\) \(\because{a^{-n}}=\frac{1}{a^n}\)

\(\frac{a^n}{a^m}=a^{n-m}∧{n=m}\to\frac{a^n}{a^n}=a^{n-n}=a^0=1\)

\(\frac{1}{a^n}=\frac{a^0}{a^n}=a^{0-n}=a^{-n}\)
Besvar