Velkommen til Matematikcenter online forum
Opret dig som bruger og få gratis adgang til Danmarks eneste gratis matematikhjælp for alle.
Har du allerede en bruger? Log ind her.

Cirkel, trigonometri og eksponentiel funktion

ringstedLC
Indlæg: 210
Tilmeldt: 22 okt 2017, 18:05

Re: Cirkel, trigonometri og eksponentiel funktion

Indlægaf ringstedLC » 09 feb 2019, 18:42

Opg. 1, c) fortsat

Da B sejler i negativ retning, bliver hældningen også negativ.
B_M_008_03 - Trig., skibe_Jess123.png
B_M_008_03 - Trig., skibe_Jess123.png (360.4 KiB) Vist 446 gange


Der må beregnes to tidspunkter for passage.
B_M_008_01cc2 - Trig., skibe_Jess123.png
B_M_008_01cc2 - Trig., skibe_Jess123.png (242.34 KiB) Vist 446 gange
Jess123
Indlæg: 114
Tilmeldt: 27 okt 2018, 14:07

Re: Cirkel, trigonometri og eksponentiel funktion

Indlægaf Jess123 » 11 feb 2019, 02:56

ringstedLC skrev:Opg. 1, c)

B_M_008_01cc1 - Trig., skibe_Jess123.png


Her er de to skibes stedfunktioner afbilledet.

B_M_008_02 - Trig., skibe_Jess123.png


Er t ikke lig 238,875 i stedet for 242?
Jess123
Indlæg: 114
Tilmeldt: 27 okt 2018, 14:07

Re: Cirkel, trigonometri og eksponentiel funktion

Indlægaf Jess123 » 11 feb 2019, 03:10

I selve opgaveformuleringen står der: To skibe A og B sejler med konstant hastighed parallelt med en kystlinje l. A sejler i afstanden 1700 meter fra l, mens B sejler i afstanden 1200 meter fra l. Klokken 12.00 er vinklen v mellem sejlretningen for A og sigtelinjen fra A til et fyrtårn F lig med 32°, mens det for B gælder, at den tilsvarende vinkel u er lig med 56°.

Så sejler de vel i samme retning og derfor må 1975,5 m være den korrekte afstand ift. opg 1.b
number42
Indlæg: 866
Tilmeldt: 10 mar 2017, 12:11

Re: Cirkel, trigonometri og eksponentiel funktion

Indlægaf number42 » 11 feb 2019, 07:56

Som tidligere nævnt så sejler de i samme retning hvis vinklerne regnes positive i samme rotations retning. Det ville man gøre i matematikken, hvordan man måler det hvis man er sømand er et åbent spørgsmål.
Jess123
Indlæg: 114
Tilmeldt: 27 okt 2018, 14:07

Re: Cirkel, trigonometri og eksponentiel funktion

Indlægaf Jess123 » 11 feb 2019, 12:37

Sejler de ikke også i positiv rotation?
number42
Indlæg: 866
Tilmeldt: 10 mar 2017, 12:11

Re: Cirkel, trigonometri og eksponentiel funktion

Indlægaf number42 » 11 feb 2019, 14:02

Jo de sejler så mod venstre, men det er ligegyldigt , det giver samme resultat
Jess123
Indlæg: 114
Tilmeldt: 27 okt 2018, 14:07

Re: Cirkel, trigonometri og eksponentiel funktion

Indlægaf Jess123 » 11 feb 2019, 17:27

Fik ikke svar på mit tidligere spørgsmål:

Er t ikke lig 238,875 s i stedet for 242 s?

Bliver det tidspunkt hvor de to skibe møder hinanden så ikke 12:03:59?
ringstedLC
Indlæg: 210
Tilmeldt: 22 okt 2017, 18:05

Re: Cirkel, trigonometri og eksponentiel funktion

Indlægaf ringstedLC » 11 feb 2019, 20:10

Nej, t er 242 s.
Men fordi GeoGebra for overskuelighedens skyld, var globalt indstillet til nul decimaler,
blev linjen ovenfor for hårdt afrundet.
Figurerne er nu afrundet til to decimaler som giver en bedre værdi.

Det er rigtig godt eksempel på, at man skal have tilstrækkeligt med decimaler i sine udregninger
for at komme med et facit på en vis opløsning.

Det var godt, at du med dette spørgsmål fik vist, at du kom igennem opgaven.
Jess123
Indlæg: 114
Tilmeldt: 27 okt 2018, 14:07

Re: Cirkel, trigonometri og eksponentiel funktion

Indlægaf Jess123 » 12 feb 2019, 13:38

Er det her korrekt?

Opgave 3

Antallet af frøer i et bestemt område vokser med 1,14 % hvert år. I år 2010 viste en optælling, at der var 483 frøer i området.

a) Bestem, hvor mange frøer der er i området efter 4 år.
Vi starter med at beregne fremskrivningsfaktoren a vha. formlen:
a=1+r=1+1,14%=1+0,0114=1,0114
Nu kan vi sætte vores a-værdi ind i funktionen, og dermed beregne, hvor mange frøer, der vil være i området efter 4 år ved at sætte 4 ind på x´s plads i funktionen:

y=483·〖1,0114〗^4
y=505,404294581

Efter 4 år vil der være 505,4 frøer i området.

b) Indfør passende betegnelser, og opskriv et matematisk udtryk, der beskriver hvor mange frøer der vil være i området efter et givet antal år. (Skal jeg ikke bruge dette spørgsmål til at svare på a)? behøver jeg så at svare på det?

c) Bestem, hvor mange år der går, før antallet af frøer i området overstiger 750.
Vi sætter 750 ind på y´s plads i ligningen:

750=483·〖1,0114〗^x
x=38,8210645954

Der vil gå 38,82 år før antallet af frøer i området overstiger 750.

Bestem fordoblingstiden for bestanden af frøer i området.
Vi sætter vores a-værdi ind i formlen for fordoblingskonstanten:

T_2=log⁡(2)/log⁡(a) =T_2=log⁡(2)/log⁡(1,0114)
T_2=61,1483030866

Fordoblingstiden for bestanden af frøer i området er 61,15. Det betyder, at det vil tage 61,15 år for at bestanden af frøer i området fordobles.
number42
Indlæg: 866
Tilmeldt: 10 mar 2017, 12:11

Re: Cirkel, trigonometri og eksponentiel funktion

Indlægaf number42 » 12 feb 2019, 19:09

Formlerne er ok og jeg går ud fra at du har regnet rigtig.

Hvad er det du har så meget imod opg b)?

Antallet til enhver tid er y = b a^x hvor b er antallet af frøer i start året hvor x=0 og x er antallet af år efter dette år. a er fremskrivningsfaktoren.



Og venligst husk at KUN en opgave per opslag, det har været utroligt rodet og uoverskueligt for andre at læse.

Men gerne masser af opslag.

Tilbage til "Matematik B"

Hvem er online

Brugere der læser dette forum: Ingen og 1 gæst