Velkommen til Matematikcenter online forum
Opret dig som bruger og få gratis adgang til Danmarks eneste gratis matematikhjælp for alle.
Har du allerede en bruger? Log ind her.

Bestem tallene s og t så sa ⃗+tb ⃗=c ⃗

janne24
Indlæg: 4
Tilmeldt: 11 jan 2021, 13:28

Bestem tallene s og t så sa ⃗+tb ⃗=c ⃗

Indlægaf janne24 » 11 jan 2021, 13:31

Bestem tallene s og t så sa ⃗+tb ⃗=c ⃗

Vektor a= (1,3)
Vektor b= (4,-2)
Vektor c=(3,-19)

Hvordan løser jeg denne?
JensSkakN
Indlæg: 697
Tilmeldt: 17 mar 2020, 12:33

Re: Bestem tallene s og t så sa ⃗+tb ⃗=c ⃗

Indlægaf JensSkakN » 11 jan 2021, 14:54

På min skærm står der nogle små firkanter, men jeg går ud fra, at de svarer til at du har forsøgt at skrive en vektorpil.
Du tager skalarproduktet med tværvektoren \(\hat a\) på begge sider af lighedstegnet.
Derved bliver koefficienten til \(s\) 0, så du kan bestemme \(t\).
Tilsvarende bestemmes \(s\)
janne24
Indlæg: 4
Tilmeldt: 11 jan 2021, 13:28

Re: Bestem tallene s og t så sa ⃗+tb ⃗=c ⃗

Indlægaf janne24 » 11 jan 2021, 15:07

Ja, det er vektorpile :)

Vil du vise mig hvordan? Jeg er ikke helt med på hvad du mener.
JensSkakN
Indlæg: 697
Tilmeldt: 17 mar 2020, 12:33

Re: Bestem tallene s og t så sa ⃗+tb ⃗=c ⃗

Indlægaf JensSkakN » 11 jan 2021, 17:22

Ja, det vil jeg, men her synes jeg du burde nævne problemet.
Ved du ikke hvad tværvektoren er?
\(\hat a= \left(\begin{matrix}-3\\1\end{matrix}\right)\)

Ved du ikke, hvad skalarproduktet er?
\({\overrightarrow b}\cdot{\hat a}=4\cdot{(-3)}-2\cdot 1=-14\)

Dette fører til
\(s\cdot 0-14\cdot t= -28 \implies t=2\)
number42
Indlæg: 1321
Tilmeldt: 10 mar 2017, 12:11

Re: Bestem tallene s og t så sa ⃗+tb ⃗=c ⃗

Indlægaf number42 » 11 jan 2021, 17:30

\(s \vec{a} + t \vec{b} = \vec{c}\) tværvektoren til ( 1,3) er (-3,1) scalar produktet af de to er -3 +3=0

Forsæt med b og c og få t (4,-2)(-3,1) = (3,-19)(-3,1) som bliver til t ( -12-2)= -9-19 og t 14 = 28 eller t =2

Gør det samme med tværvektoren til b.
janne24
Indlæg: 4
Tilmeldt: 11 jan 2021, 13:28

Re: Bestem tallene s og t så sa ⃗+tb ⃗=c ⃗

Indlægaf janne24 » 11 jan 2021, 20:02

Tjo. Jeg er først lige begyndt på emnet så jeg er ikke så stærk i det endnu. Jeg er klar over hvordan man finder tværvektor og skalarproduktet. Jeg kan bare ikke se hvorfor det er den rigtige løsning. :o Altså jeg kan ikke se logikken bag
JensSkakN
Indlæg: 697
Tilmeldt: 17 mar 2020, 12:33

Re: Bestem tallene s og t så sa ⃗+tb ⃗=c ⃗

Indlægaf JensSkakN » 11 jan 2021, 21:39

Det er meget positivt, at du skriver 'endnu'.
Jeg prøver at forklare 'logikken'
Når \(\,\,s\cdot \overrightarrow a+ t\cdot \overrightarrow b=\overrightarrow c\)
så betyder det, at størrelsen til venstre for lighedstegnet er identisk med størrelsen til højre, derfor må det ligeledes gælde at
\(\,\,{(s\cdot \overrightarrow a+ t\cdot \overrightarrow b)}\cdot \hat a= {\overrightarrow c}\cdot \hat a\).
Men \(s\cdot {(\overrightarrow a \cdot \hat a)}=0\)
og \(t\cdot{(\overrightarrow b \cdot \hat a)}=-14t\)
osv.
Hjalp det?
number42
Indlæg: 1321
Tilmeldt: 10 mar 2017, 12:11

Re: Bestem tallene s og t så sa ⃗+tb ⃗=c ⃗

Indlægaf number42 » 12 jan 2021, 13:41

Janne24
Du har jo fået en god forklaring, men her er lidt mere varianter på emnet. ( jeg hopper let over vektor pilene til a,b og c og bruger bare mellemrum som gangetegn

Du har altså s a + t b = c , det er jo en vektor ligning men det er også to ligninger med to ubekendte, ( det skal det jo være for der er to ubekendte s og t., til den ene ligning bruges første koordinaterne af vektorerne og til den anden ligning anden koordinaterne)

De to ligninger er s 1+ t 4 = 3 og s 3 -t 2 = -19 de to ligninger kan vi jo løse ved at gange den første ligning med 3 og få s 3 + t 12 = 9 og derefter
trækker vi den anden ligning fra dette og får s 0 + t 14 = 28 hvilket giver t = 2. Og vi kan så også finde hvad s er.

Det jeg vil gøre dig opmærksom på er at hvis du nu havde sådanne ligninger med to ubekendte så kunne du også betragte dem som en vektor ligning og løse den på den smarte måde du lige har lært med vektorer.

Fx s a1 + t b1 = c1 og s a2 + t b2 = c2 så vi ved vi kan eliminere faktoren til s og vi får t (b1,b2) (-a2,a1) = (c1,c2) (-a2,a1) og så er vi næsten færdige, vi skal bare gange skalar produkterne ud.
janne24
Indlæg: 4
Tilmeldt: 11 jan 2021, 13:28

Re: Bestem tallene s og t så sa ⃗+tb ⃗=c ⃗

Indlægaf janne24 » 12 jan 2021, 20:14

Tusind tak for jeres tid! Det hjalp enormt meget :)

Tilbage til "Matematik A"

Hvem er online

Brugere der læser dette forum: Ingen og 2 gæster