Velkommen til Matematikcenter online forum
Opret dig som bruger og få gratis adgang til Danmarks eneste gratis matematikhjælp for alle.
Har du allerede en bruger? Log ind her.

Koefficientbestemmelse ved logaritmisk udvikling

matcenter
Site Admin
Indlæg: 14
Tilmeldt: 07 maj 2015, 10:13

Koefficientbestemmelse ved logaritmisk udvikling

Indlægaf matcenter » 10 jan 2019, 08:58

Hej,

Jeg laver dette indlæg på vegne af brugeren, Hedda123, som har lidt vanskeligheder med at bruge vores forum. Betragt derfor ikke indlægget som værende lavet af admin. Følgende er et dokument som brugeren har sendt til Matematikcenter, hvor der er forslag til løsninger, dog ikke med bevis: https://drive.google.com/file/d/1nvRDSO_V1D2SKeApQTR-pKbUzkmUX9W_/view?usp=sharing.

Det drejer sig om fire udviklingsfunktioner: lineær(\(y=a\cdot x+b\)), eksponentiel(\(y=b\cdot a^x\)), potens(\(y=b\cdot x^a\)) og logaritmisk(\(y=a\cdot \ln(x)+b\)). Til de første tre findes der veldefinerede løsningsformler til bestemmelse af koefficienterne a og b, men hvad er løsningen når man vil bestemme de to koefficienter til den logaritmiske udvikling?
number42
Indlæg: 880
Tilmeldt: 10 mar 2017, 12:11

Re: Koefficientbestemmelse ved logaritmisk udvikling

Indlægaf number42 » 10 jan 2019, 09:14

Hej, spørgsmålet er jo besvaret i det referede dokument ?

Forstår ikke rigtig hvad det ellers går ud på.

Alle varianterne følger samme strategi, nemlig at skifte variable så problemet bliver et lineært problem.
matcenter
Site Admin
Indlæg: 14
Tilmeldt: 07 maj 2015, 10:13

Re: Koefficientbestemmelse ved logaritmisk udvikling

Indlægaf matcenter » 10 jan 2019, 10:16

Som jeg forstod det, så drejer det sig primært om beviset for koefficientbestemmelse ved logaritmisk vækst.
Men tråden kan godt lukkes her, da løsningen jo netop er angivet i dokumentet.
number42
Indlæg: 880
Tilmeldt: 10 mar 2017, 12:11

Re: Koefficientbestemmelse ved logaritmisk udvikling

Indlægaf number42 » 10 jan 2019, 12:58

Jeg kan jo lige prøve at gå de forskellige løsninger igennem her (havde lidt travlt i morges)

Det lineære eksempel:
Vi kender to punkter på linjen y = a x+b , dem sætter vi ind i ligningen \(y_1 = a x_1 +b\) og \(y_2 = a x_2 +b\)
så trækker vi de to ligninger fra hinanden for at eliminere b og får \(y_2-y_1 = a ( x_2-x_1)\) , hvoraf \(a = \frac{y_2-y_1}{x_2-x_1}\), b finder vi ved at indsætte den fundne værdi for a i en af de to ligninger.

eksponentiel:
\(y = b \cdot a^x\) , da vi kender løsningen til det lineære tilfælde så omdanner vi udtrykket ved at tage logaritmen på begge sider af lighedstegnet, \(log(y) = log(b * a^x) = log(b) + x log(a)\) , nu erstatter vi log(y) med u altså u = log(y) og får u = log(b) + x log(a).
nu ligner det det lineære eksempel og vi finder \(log(a) = \frac{u_2-u_1}{ x_2-x_1 }\) så \(a = e^{\frac{u_2-u_1}{ x_2-x_1 }}\) og vi skal erstatte u-erne med log(y) for de to værdier af u.

Potens:
\(y = b \cdot x^{a}\) samme procedure som ovenfor log(y) = log(b) + a log(x) , vi erstatter log(y) med u og Log(x) med v og får
\(a = \frac{u_2-u_1}{v_2-v_1}\) hvor vi igen indsætter værdierne for u og v

Logaritmisk:
y = a log(x) +b samme procedure som før, erstat log(x) med v og få \(a = \frac{y_2-y_1}{v_2-v_1 }\) og naturligvis indsætter vi igen v = log(x) i formlen. Vi får så \(a = \frac{y_2-y_1}{log(x_2)-log(x_1) }\)
matcenter
Site Admin
Indlæg: 14
Tilmeldt: 07 maj 2015, 10:13

Re: Koefficientbestemmelse ved logaritmisk udvikling

Indlægaf matcenter » 16 jan 2019, 09:12

Mange tak for svaret.

Tilbage til "Matematikhjælp til elever"

Hvem er online

Brugere der læser dette forum: Ingen og 1 gæst